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Abstract

When beams are connected at an arbitrary angle and subjected to an external excitation, both
longitudinal and bending waves are generated in the system. Since longitudinal wavelengths are
considerably longer than bending wavelengths in the mid-frequency region, the number of bending
wavelengths in the beams is considerably larger than the number of longitudinal wavelengths. In this
paper, plannar beams connected at arbitrary angles are considered. The energy finite element analysis
(EFEA) is employed for modelling the bending behavior of the beams and the conventional finite
element analysis (FEA) is utilized for modelling the longitudinal vibration in the beams. Thus, a basic
hybrid FEA formulation is presented for mid-frequency analysis of systems that contain two types
of energy. The bending vibration is associated with the long members in the system and the longi-
tudinal vibration is associated with the short members. The long members are considered to have
high modal overlap and to contain several wavelengths within their dimension, and uncertainty effects
are present. The short members contain a small number of wavelengths, and exhibit a low modal overlap.
Due to the low modal overlap the resonant frequencies are spaced far apart in the frequency domain,
therefore the short members exhibit resonant or non-resonant behavior depending on the frequency of the
excitation.

In this work, the bending and the longitudinal vibration within the same beam member are treated as a
long and as a short member, respectively. A hybrid joint formulation is developed between long and short
members. Power reflection and transmission coefficients are derived for each joint. The distribution of the
energy throughout the system demonstrates a strong dependency on the power transfer coefficients. Several
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systems are analyzed by the hybrid FEA and by analytical solutions, and good correlation between them is
observed.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The frequency spectrum where simulation methods can be utilized for vibration analysis can be
divided into three regions: low, mid, and high frequency. The low-frequency region is defined as
the frequency range where all components contain a small number of wavelengths (short
members). Due to the relative large size of the wavelengths with respect to the size of each
component small uncertainties in the properties of the short members do not impact their
distinctly resonant behavior. By taking into account the definition of the modal overlap as the
resonance bandwidth divided by the average frequency spacing between resonance frequencies it
is expected that short members will have low modal overlap values and exhibit resonant behavior.
conventional finite element analysis (FEA) is a practical numerical approach for simulating low-
frequency vibrations [1–3].

In the high-frequency region all the component members of a system are long with respect
to a wavelength (long members). Due to the relative small size of the wavelengths with res-
pect to the size of each component, small uncertainties in the properties of the long members
lead to a behavior that can be considered as incoherent. In addition, long members are expected
to exhibit considerably higher modal overlap than the short members, since resonant effects
are not present. Statistical energy analysis (SEA) [4–8], and energy finite element analysis
(EFEA) [9–15] can be used for vibro-acoustic simulations at high frequencies. Both methods
provide meaningful results for the ensemble average response of each member and of the system
[16].

The mid-frequency region is defined as the frequency range where some of the components of a
system behave as long members while other members present characteristics of short members. In
the mid-frequency range the FEA method requires a prohibiting large number of computations in
order to capture the discrete in space and frequency vibration of the long members and in order to
include uncertainty effects. The energy methods (SEA and EFEA) contain assumptions that are
valid when all components of a system exhibit behavior that can be approximated as incoherent.
Thus, the energy methods cannot capture the resonant effects which are present due to the short
members of a system in the mid-frequencies. In the energy methods the amount of power
transferred between members at a joint is defined in terms of coupling loss factors (in SEA) or
power transfer coefficients (in EFEA). The process that computes the values of the coupling loss
factors or the power transfer coefficients employs analytical solutions of semi-infinite members in
order to define the power transfer characteristics of each joint [17]. The computations are
meaningful when the members connected at the joint are long and their power transfer
characteristics can be considered as equal to the power transfer characteristics of the semi-infinite
members due to the high modal overlap of the members. The requirement for high modal
overlap is necessary because the information produced by the analytical solutions of the semi-
infinite members captures the characteristics of power flow between members when the
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members demonstrate an equal amount of coupling between their normal modes. If large
differences exist in the power flow due to the distinct resonant behavior of the short members then
the power transfer characteristics cannot be captured properly from analytical solutions of semi-
infinite members.

In the past, conventional finite element models have been employed in order to determine
the SEA coupling loss factors [18–23] or the EFEA power transfer coefficients [14] instead
of the analytical solutions of semi-infinite members. The rationale in these developments
was to employ conventional FEA since they can capture the coupling mechanism when the
connection between members presents a complexity that cannot be accounted by the
analytical solutions of semi-infinite members. An approach based on creating a statistical
Green kernel for a boundary element formulation for assembled rods and beams in the
mid-frequency range has been presented [24]. The statistical Green kernel is constructed
based on random mechanical constants. The fundamental solution is then considered as a
random function. A direct boundary element approach is employed to achieve numerical
solution. Examples of analyzing a single rod, two co-linear rods, and a single beam were presented
[24].

The concept of combining an FEA and an SEA formulation for developing a hybrid
approach has been presented [25]. The lack of compatibility at the joint between the SEA
variables and the FEA variables became a main issue. An optimization routine was developed to
approximate the compatibility at the joint between the SEA and the FEA variables. Recently,
another hybrid approach based on coupling FEA and SEA methods has been presented for rod
elements [26]. The method was based on utilizing FEA to compute the low-frequency global
modes of a system and SEA to represent the high-frequency local modes of each subsystem. The
low-frequency global modal degrees of freedom were coupled to the high-frequency local modal
degrees of freedom. Assumptions of weak coupling between the subsystems, weak stiffness
coupling between local and global degrees of freedom, and rain-on-the-roof type of excitation
were made. Also an implicit assumption was made that it was possible to readily identify the
global and the local modes of a system. The validation was based on an example of two co-linear
rod elements [26].

In previous work, a hybrid FEA formulation was presented for mid-frequency
vibration analysis of co-linear beam systems that contain one type of energy [27–29]. The
development was based on coupling conventional FEA models of short members to EFEA
models of long members. Only one flexural wave existed in the system. External excitation
was considered to be applied either on a long or a short member. The joints between long
and short members were modelled by combining analytical solutions of semi-infinite
members that represent the long members to FEA numerical models for the short members.
Power transfer coefficients that include the resonant and damping characteristics of the
short members, and relationships between the EFEA and FEA primary variables at the
joints were derived. A major advantage offered from the wave-based formulation of the
EFEA is the distinction between the energy (and the power) associated with waves
travelling towards and away from a joint. At a joint between a long and a short member only
the energy associated with the impinging wave contributes to the excitation of the short member.
Thus, when multiple members are connected together, effects of strong coupling, power
reinjection [16], indirect power flow [30], and power reradiation [31] can be captured correctly by
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the hybrid finite element solution [29]. When excitation was applied on a short member, an
iterative solution process was formulated for solving simultaneously the FEA system of equations,
the EFEA system of equations, and the system of interface equations between short and long
members.

Since analytical wave solutions or a spectral analysis method [32] are available for
analyzing beams and rods connected together, the main interest of this paper is not to
develop yet another technique for the analysis of such systems. Instead, the main objective
is to pursue fundamental research for further developing the hybrid FEA by extending
the completed basic hybrid FEA formulation [27–29] to systems that contain two types of
energy. Beams connected at an arbitrary angle in a two-dimensional space constitute an
appropriate test-bed for such development because they exhibit two types of energy while
their behavior can be computed analytically. Therefore, the new hybrid FEA development can be
validated through comparison with analytical results. In beams connected at an arbitrary angle
in a two-dimensional space, both longitudinal and bending waves are generated in the
system when an external excitation is applied on the bending degrees of freedom. Since
longitudinal wavelengths are considerably longer than bending wavelengths, the frequency range
where a beam contains a large number of bending wavelengths and a small number of
longitudinal wavelengths comprises the mid-frequency range that is considered in this paper. The
bending vibration of a beam is considered as a long member and the longitudinal vibration of the
same beam as a short member. Long members exhibit high modal overlap, therefore since their
natural frequencies are closely spaced they demonstrate similar behavior at different frequencies.
Due to the small length of the waves with respect to the dimension of the members, the
space averaged over a wavelength and time averaged over a period energy density presents a
small variation with space and provides meaningful information about the state of vibration
of the long member. The energy variable can be converted into velocity, displacement,
acceleration, strain, and stress according to Ref. [8, Table 7.1]. Short members present low
modal overlap and their behavior varies significantly with frequency since their natural
frequencies are spaced far apart in the frequency domain. In addition, due to the long
wavelengths in the short members, the vibration varies significantly with respect to the location
within the member. For the same beam, the bending behavior is modelled by EFEA and the
longitudinal behavior by FEA. Connections between different beams are characterized as joint
locations and they comprise the areas where there is interaction between bending and longitudinal
motion. The joints between long and short members are modelled by combining analytical
solutions of semi-infinite members that represent the long members, to FEA numerical models for
the short members. Two sets of data are produced from the coupling process. The first set is
comprised of power transfer coefficients for each EFEA member at a joint with the short
members. The computed power transfer coefficients capture the resonant effects of the short
members and the damping that can be present in the short members. The second set of data is
comprised of relationships between the primary variables of the EFEA model and the primary
variables of the FEA model at a joint between long and short members. Only the energy
associated with the impinging waves from the long members to the joint defines the excitations on
the short members. Numerical solutions of the new hybrid FEA formulation are compared
successfully to analytical solutions for several systems of beams connected at an angle in a two-
dimensional space.
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2. Background on EFEA

In this paper, the EFEA is utilized for modelling the bending behavior of the beams, therefore,
a brief overview of the method is presented. In EFEA, the space and time averaged energy density
constitutes the primary variable of the formulation [9–14,33]. The governing differential equation
associated with one of the bending degrees of freedom in a beam is

�c2g

Zo
d2/eS
dx2

þ Zo/eS ¼ Q
in
; ð1Þ

where cg is the group speed of the bending waves, Z the hysterisis damping factor, o the radial
frequency, Q

in
the time averaged over a period external input power, and /eS is the time averaged

over a period and space averaged over a wavelength energy density. A finite element approach is
employed for solving Eq. (1) numerically, resulting in [33]

½Ee�ifeegi ¼ fFegi þ fQegi; ð2Þ

where superscript e indicates element-based quantities, subscript i indicates the ith element,
feegi the vector of nodal values for the time and space averaged energy density for the ith
element, ½Ee�i the system matrix for the ith element, fFegi the vector of external time averaged
input power at the nodal locations of the ith element, and fQegi is the vector of internal power
flow at the boundary locations of the ith element. In EFEA the term fQegi provides the
mechanism for connecting elements together across discontinuities [34]. In the hybrid FEA
formulation fQegi provides the mechanism for prescribing the power flow between long and short
members.

In EFEA at positions where different members are connected, the energy density is
discontinuous. The corresponding boundary between the elements defines a joint location.
Therefore, during the assembly of the global system the element matrices do not couple, and the
values of the internal power flow at the common node do not overlap to cancel each other.
Instead, they remain as variables on the right side of the equation

½Ee�i
½Ee�j

" #
feegi

feegj

( )
¼

fFegi

fFegj

( )
þ

fQegi

fQegj

( )
: ð3Þ

A special procedure is used for assembling the element matrix into the global matrix equations
[33]. A specialized joint element equation is developed to formulate the connection between the
discontinuous primary variables at the joint. The values of the power flow at the inter-element
nodes corresponding to the two adjacent elements are expressed in terms of the corresponding
energy densities [34]:

Qe
ic

Qe
jc

( )
¼ ½J�ij

ee
ic

ee
jc

( )
; ð4Þ
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where subscript c indicates the common node between elements i and j; and ½J�ij is the joint
matrix expressing the mechanism of power transfer between elements i and j: The coefficients
of the joint matrix are computed from power transfer coefficients. Introducing Eq. (4) into
Eq. (3) results in

½Ee�i
½Ee�j

" #
þ ½JC�ij

 !
feegi

feegj

( )
¼

fFegi

fFegj

( )
; ð5Þ

where ½JC�ij is the joint matrix comprising the coefficients of ½J�ij positioned in the appropriate
locations.

3. Hybrid FEA formulation for beams connected at an arbitrary angle

The bending vibration in the beams is modelled by the EFEA formulation and the
longitudinal vibration is modelled with conventional FEA. The resonant behavior exhibited by
the beams in the longitudinal direction is captured by the FEA formulation. The coupling between
bending and longitudinal vibration is created at locations where the beams are connected at non-
zero angles. A hybrid joint formulation is developed in order to capture the relationships between
the EFEA and FEA primary variables at the joints, and in order to derive power transfer
coefficients that include the resonant and damping behavior exhibited by the beams in the
longitudinal direction. The power transfer coefficients computed from the hybrid joint
formulation are incorporated in the EFEA solution. Relationships between the EFEA and
FEA primary variables at the joints are also derived by the hybrid joint formulation. The
excitation applied on the longitudinal degrees of freedom from the bending vibration can be
determined from the relationships between the EFEA and FEA primary variables and from the
EFEA solution. The longitudinal vibration of the beams can be computed by the FEA system of
equations once the distribution of the bending energy density has been determined by the EFEA.
The bending energy density at the joints along with the relationships between EFEA and FEA
primary variables at the joints evaluates the appropriate boundary conditions for the FEA
computations.

3.1. Condensation of FEA system of equations

A finite element model is utilized for computing the longitudinal vibration of the beams. The
FEA system of equations for the longitudinal behavior of all the beams inter-connected together
can be written in matrix form as

I� o2½M� þ io½C� þ ½K �mfug ¼ fRg ) ½ST �fug ¼ fRg; ð6Þ

where ½M�; ½C�; ½K � is the mass, damping, and stiffness matrix, respectively, fug the displacement
of longitudinal vibration in a global two-dimensional system, ½ST � the global structural system
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matrix including the mass, damping, and stiffness effects, and fRg is the vector of reaction forces
and moments imposed by supports or external excitation.

By considering two beams connected at each joint location, Eq. (6) can be partitioned into the
global degrees of freedom at each joint, the global degrees of freedom at the edges of the system,
and all the remaining internal global degrees of freedom:

½ST11� ½ST12�

½ST21� ½ST22�

" #

u1
x

u1
y

�

�

�

ui
x

ui
y

�

�

�

uM
x

uM
y

ub1
x

ub1
y

ub2
x

ub2
y

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

fu2g

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼

F1
x

F1
y

�

�

�

Fi
x

F i
y

�

�

�

FM
x

FM
y

Fb1
x

Fb1
y

Fb2
x

Fb2
y

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

fF2g

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

)
½ST11� ½ST12�

½ST21� ½ST22�

" #
fu1g

fu2g

( )
¼

fF1g

fF2g

( )
; ð7Þ

where ui
x; ui

y is the longitudinal degrees of freedom in the global x and y directions at
the ith joint location, M the total number of joint locations in the system, superscripts b1
and b2 indicate the two outer edges in the system, fu2g indicates all the remaining internal
global degrees of freedom, Fi

x; Fi
y the forces in the global x and global y directions at

the jth joint location, and subscript 2 indicates the global internal degrees of freedom. The
displacement vector and the force vector are rewritten in a condensed form by grouping
together all the global degrees of freedom at the joints and at the two outer boundaries
of the system, and by representing the new group of global degrees of freedom with subscript 1.
Since it is considered that no external excitation is applied on the longitudinal degrees of freedom,
fF2g ¼ f0g:

From the lower part of Eq. (7), fu2g can be expressed in terms of fu1g and then substituted in
the upper part of the equation. This condensation process results in
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½S�

u1
x

u1
y

�

�

�

uM
x

uM
y

ub1
x

ub1
y

ub2
x

ub2
y

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

¼

F1
x

F1
y

�

�

�

FM
x

FM
y

Fb1
x

Fb1
y

Fb2
x

Fb2
y

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

; ð8Þ

where ½S� ¼ I½ST11� � ½ST12�½ST22��1½ST21�m is the condensed FEA system of equations. The
entries of the forcing vector on the right-hand side of Eq. (8) constitute the interaction mechanism
between the longitudinal and the bending degrees of freedom at the joints. Eq. (8) is employed for
deriving: (i) EFEA power transfer coefficients for the bending waves in the long members
including the resonant effects of the short members; (ii) relationships between EFEA and FEA
primary variables at the joints.

3.2. Derivation of EFEA power transfer coefficients at joints between long and short members

In order to derive the EFEA power transfer coefficients at the joints, analytical equations
representing the bending behavior of semi-infinite beams are coupled with the global longitudinal
FEA degrees of freedom at the joints. A separate computation is required by considering a wave
impinging from each long member at each joint. One semi-infinite member is utilized for
representing the beam where the impinging wave is applied, and one semi-infinite member is
employed for representing every other beam in the system where a bending wave is transmitted. A
global system of equations is derived based on compatibility conditions between the bending
degrees of freedom of the semi-infinite members at the joints and the global longitudinal FEA
degrees of freedom at the joint. The termination boundary conditions at the two ends of the
system of the inter-connected longitudinal degrees of freedom are also taken into account. The
analytical solution of the semi-infinite member that carries the incident and the reflected waves is

W i
nðz; tÞ ¼ wi

nðzÞe
iot ¼ ½Ai

ne
�iki

nz þ Ci
ne

iki
nz þ Di

ne
ki

nz�eiot; ð9Þ

where z is the co-ordinate in the local system for the semi-infinite member with origin at the joint,
superscript i indicates the joint where the incident wave is impinging, subscript n indicates the
semi-infinite member that is carrying the impinging and the reflected waves at joint i; Ai

n the
amplitude of incident wave, Ci

n the amplitude of farfield reflected wave, and Di
n is the amplitude of
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nearfield reflected wave. The bending wave number can be obtained by the equation

ki
n ¼

o2ri
nSi

n

Ei
nI i

n

� �1=4
; ð10Þ

where r is the density, S the cross-sectional area, and EI the bending rigidity. The analytical
solution of the semi-infinite members that carry the transmitted waves is

W j
mðz; tÞ ¼ w j

mðzÞe
iot ¼ ½Aj

me
�ik

j
mz þ B j

me
�k

j
mz�eiot; ð11Þ

where superscript j indicates the jth joint, subscript m indicates a semi-infinite member that is
carrying the transmitted wave at joint j; Aj

m the amplitude of the farfield transmitted wave, Bj
m the

amplitude of the nearfield transmitted wave. The bending wave number kj
m is evaluated from an

equation similar to Eq. (10) by appropriately replacing subscript n with m and superscript i with j:
The amplitude of the reflected wave and the amplitudes of all the transmitted waves constitute the
unknown variables. The system of equations for the hybrid joint allows to express the unknown
variables in terms of the amplitude of the incident wave. Then, the power associated with the
farfield impinging, reflected, and transmitted waves can be computed and the power transfer
coefficients can be evaluated [27–29].

The total number of unknown variables for each computation of power transfer coefficients is
equal to the summation of the global longitudinal FEA degrees of freedom at all the joints ð2MÞ;
the amplitudes of the nearfield and the farfield components of the transmitted waves carried by all
the semi-infinite members at all the joints ð2MÞ; the amplitudes of the near- and farfield
components of the reflected wave carried by the semi-infinite member that contains the impinging
wave (2), and the longitudinal degrees of freedom at the two outer boundaries of the FEA model
(2). Therefore, the total number of unknown variables is ð4M þ 4Þ: Each computation of power
transfer coefficients is associated with an impinging wave at a joint. There are four compatibility
conditions at every joint where a semi-infinite member carrying a transmitted wave is attached.
The equilibrium of forces in the two global directions are

Fj
x � F

j
bm sin y j

m ¼ 0; Fj
y þ F

j
bm cos y j

m ¼ 0; ð12Þ

where Fj
x; Fj

y is the forces of the FEA formulation of the longitudinal degrees of freedom
expressed in the global x and y directions (also defined in Eq. (8)), superscript j indicates the jth
joint, y the angle defining the orientation of each member connected at the jth joint with respect to
the global x-axis and F

j
bm is the shear force associated with the bending wave transmitted in the

semi-infinite member of the jth joint. The compatibility between the longitudinal and the bending
displacements at each joint in the two global directions can be stated as

u j
x � w

j
bm sin y j

m ¼ 0; u j
y þ w

j
bm cos y j

m ¼ 0; ð13Þ

where w
j
bm is the displacement of the transmitted bending wave at the edge of the semi-infinite

member attached to joint j:
For the joint i where a semi-infinite member carrying the impinging wave is attached the

equilibrium of forces and compatibility of displacement conditions become

Fi
x � Fi

bm sin yi
m � Fi

bn sin yi
n ¼ 0; Fi

y þ Fi
bm cos yi

m � Fi
bn sin yi

n ¼ 0;

ui
x � wi

bm sin yi
m � wi

bn sin yi
n ¼ 0; ui

y þ wi
bm cos yi

m þ wi
bn cos yi

n ¼ 0; ð14Þ
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where Fi
bn is the shear force associated with the impinging bending wave, and wi

bn the displacement
of the impinging bending wave at the edge of the semi-infinite member attached to joint i:

In addition, due to the presence of two semi-infinite members at joint i (one carrying the
impinging and one carrying the transmitted wave), two more equations can be stated. They
originate from equilibrium of moments and continuity of slope at the joint:

Mi
bm ¼ Mi

bn;
dwi

bm

dz
¼

dwi
bn

dz
; ð15Þ

where Mi
bm; Mi

bn are bending moments applied at the edge of the semi-infinite members that carry
the transmitted and the impinging bending waves, respectively.

Two boundary conditions imposed as prescribed displacement or prescribed force on the
longitudinal degrees of freedom at the two boundaries of the system are also included in the
system of the hybrid joint equations. Therefore, the total number of equations is ð4M þ 4Þ which
is equal to the number of total unknown variables. The shear forces and the bending moments of
the impinging and the transmitted waves are expressed in terms of the analytical displacement
solutions (Eqs. (9) and (11)). The global forces which are associated with the longitudinal degrees
of freedom in Eq. (12), are expressed in terms of the global longitudinal displacements at the joints
and the entries of matrix ½S� from the condensed finite element system of equations (Eq. (8)).
Thus, solution to the final system of equations for the hybrid joint formulation allows to express
all the unknown variables in terms of the amplitude of the impinging wave. The amplitudes of the
reflected waves are

Ci
n ¼ af ii

nnAi
n; Di

n ¼ anii
nnAi

n; ð16Þ

where af ii
nn; anii

nn is the coefficients associated with the far- and nearfield reflected wave
components propagating on the semi-infinite member that is carrying the impinging wave at the
ith joint. The amplitudes of the transmitted waves are

Aj
m ¼ af ij

nmAi
n; B j

m ¼ anij
nmAi

n; ð17Þ

where af ij
nm; anij

nm is the coefficients associated with the far- and nearfield components of the wave
transmitted on the semi-infinite member of the jth joint due to a wave impinging on the ith joint.
Finally, the global longitudinal degrees of freedom at each joint can be expressed as

uij
x ¼ axij

nAi
n; uij

y ¼ ayij
nAi

n; ð18Þ

where axij
n ; ayij

n is the coefficients associated with the global x and y directions at the jth joint due
to the incident wave at the ith joint.

The power transmission coefficient tij
nm represents the amount of power of the mth transmitted

wave at the jth joint due to the nth incident wave at the ith joint. The power reflection coefficient
rii

nn represents the amount of power reflected back to the semi-infinite member which is carrying
the nth incident wave at the ith joint. Only the amplitudes of the farfield terms participate in the
calculation of the power transfer coefficients. Hence, tij

nm can be defined as

tij
nm ¼

ðqtranÞ
j

m

ðqincÞ
i
n

¼
ðEIÞ j

mðk
j
mÞ

3ojAj
mj

2

ðEIÞinðki
nÞ

3ojAi
nj

2
¼

ðEIÞ j
mðk

j
mÞ

3

ðEIÞinðki
nÞ

3
jaf ij

nmj
2: ð19Þ
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The reflection coefficient rii
nn can be defined similarly as

rii
nn ¼

ðqreflÞ
i
n

ðqincÞ
i
n

¼
ðEIÞinðk

i
nÞ

3ojCi
nj

2

ðEIÞinðki
nÞ

3ojAi
nj

2
¼

jCi
nj

2

jAi
nj

2
¼ jaf ii

nnj
2: ð20Þ

Transmission and reflection coefficients are computed by considering a bending wave impinging
from each beam separately.

3.3. Relationship between the EFEA and the FEA primary variables at a joint between long and
short members

The derivation of the EFEA power transfer coefficients accounts for the resonant and damping
characteristics of the longitudinal degrees of freedom (short members). The constants af ij

nm and
af ii

nn that are directly related to tij
nm and rii

nn; respectively, are computed from the system of
equations of the hybrid joint formulation. The system of equations includes all the resonant and
damping characteristics of the FEA matrix of the longitudinal degrees of freedom. Once the
power transfer coefficients have been evaluated, the EFEA system of equations is solved and the
distribution of the energy density associated with the bending degrees of freedom is computed for
all the beams. The solution for the energy density contains all the resonant and dissipative
characteristics of the longitudinal degrees of freedom captured by the power transfer coefficients.

Once the EFEA computations have been completed, the distribution of the energy density can
be utilized to evaluate the longitudinal behavior of all the beams. From the EFEA analysis, a
value for the bending energy density is computed at the edges of the two beams connected at each
joint. The amount of the energy density associated with the impinging wave is identified and
utilized to specify the excitation applied on the longitudinal degrees of freedom due to the bending
waves. The energy density ei

1 of the left beam at the ith joint can be expressed in terms of a right
and a left travelling wave:

ei
1 ¼ eiþ

1 þ ei�
1 ¼ eiþ

1 þ
qi�
1

ci
g1Si

1

¼ eiþ
1 þ

1

ci
g1Si

1

½rii
11qiþ

1 þ tii
21qi�

2 �

¼ ð1þ rii
11Þe

iþ
1 þ

ci
g2Si

2

ci
g1Si

1

tii
21ei�

2 ; ð21Þ

where superscripts ‘‘þ’’,‘‘�’’ indicate right and left travelling waves, subscripts 1 and 2 indicate
the left and the right member connected at the ith joint, and ci

g1; c
i
g2 the bending group speeds of

the left and the right members at the ith joint. In a similar manner, the energy density of the right
beam at the ith joint can be expressed as

ei
2 ¼

ci
g1Si

1

ci
g2Si

2

tii
12eiþ

1 þ ð1þ rii
22Þe

i�
2 : ð22Þ
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Combining Eqs. (21) and (22) in matrix form results in

ei
1

ei
2

( )
¼

ð1þ rii
11Þ

ci
g2Si

2

c
j
g1S

j
1

tii
21

ci
g1Si

1

ci
g2Si

2

tii
12 ð1þ rii

22Þ

2
66664

3
77775

eiþ
1

ei�
2

( )
¼ ½E�

eiþ
1

ei�
2

( )
: ð23Þ

The values for ei
1 and ei

2 are evaluated by the EFEA computations for the long members. In the
EFEA analysis, the power transfer coefficients account for the resonant behavior and the
dissipation associated with the longitudinal degrees of freedom. The values for eiþ

1 and ei�
2 are

computed from Eq. (23) and they are utilized to prescribe the excitation on all the longitudinal
degrees of freedom at all the joints. Only the component of the energy density associated with the
impinging wave is employed for defining the excitation on the system of the longitudinal degrees
of freedom. The values of the energy densities eiþ

1 and ei�
2 are employed for defining the

amplitudes of the two bending waves impinging at the ith joint. Each amplitude of the impinging
waves provides the excitation in the hybrid joint system of equations. The boundary conditions
applied on all the longitudinal degrees of freedom at all the joint locations due to each wave
impinging at the ith joint are computed. The excitations applied on the longitudinal system by all
the waves impinging at the joints are incoherent since the impinging waves originate from the
reverberant field of each long member. The energy density ei

n of an impinging wave at the ith joint
is associated with the amplitude of the corresponding impinging wave as

ei
n ¼ 1

2
ri

no
2jAi

nj
2: ð24Þ

Eqs. (18) and (24) are employed for developing relationships between the global FEA degrees of
freedom at all the joints and the energy density associated with an impinging bending wave at the
ith joint.

3.4. System solution

An external input power is considered to be applied on the long members (bending degrees of
freedom) as external excitation. The global EFEA system matrix is assembled for all the long
members. Power transfer coefficients evaluated from analytical solutions of semi-infinite members
and FEA models that represent the longitudinal behavior are utilized for generating coupling
matrices between long members. The power transfer coefficients derived by Eqs. (19) and (20) are
employed for developing the joint matrices. The power transfer coefficients incorporate the
resonant effects and the dissipative characteristics of the longitudinal degrees of freedom in
the power transfer mechanism between all the long members. The joint matrices represent the
interaction between all the EFEA degrees of freedom at all the joint locations and they include the
power transferred among them through the longitudinal degrees of freedom. The EFEA system of
equations is solved first, and the distribution of the energy density over all the long members is
evaluated. From the values of the bending energy density at each joint the energy density
associated with each one of the two impinging bending waves is computed from Eq. (23). For each
impinging bending wave, Eqs. (24) and (18) are employed for defining the global longitudinal
FEA degrees of freedom at all the joints. The FEA method is employed to solve for all the internal
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FEA degrees of freedom fnui
2g due to a bending wave impinging at the ith joint. By taking into

account the partitioning and condensation process applied on the FEA system of equations fnui
2g

can be computed:

fnui
2g ¼ �½ST22��1½ST21�

ui1
x

ui1
y

�

�

�

uiM
x

uiM
y

ub1
x

ub1
y

ub2
x

ub2
y

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð25Þ

where fnui
2g is the response of the internal FEA degrees of freedom due to excitation originating

from an impinging bending wave (superscript n) at the ith joint (superscript i). The bending energy
density at the joints originates from the incoherent field of the long members. Thus, the excitations
applied on the longitudinal FEA degrees of freedom from all the bending waves impinging at the
joints are considered as incoherent. The total response and the energy density distribution over the
short members is evaluated by adding up the FEA response fnui

2g computed from each impinging
wave on an energy basis. The effects from power reinjected in the long members is accounted in
the solution since Eq. (23) includes on the left side terms associated with both reflected power and
power transmitted from the other long member [27,29]. The flow chart of the new hybrid FEA
formulation is presented in Fig. 1.

4. Validation

The hybrid FEA formulation presented in this work is validated by computing the bending
energy (long members) and the longitudinal energy (short members) for two beam configurations
and comparing the numerical results to analytical solutions (see Appendix A). The properties of
the beams that are utilized in the validation are summarized in Table 1. Variations of two primary
configurations of a two-beam (Fig. 2) and a three-beam (Fig. 3) system are analyzed. Free end
boundary conditions are considered for all systems. A harmonic force in the transverse direction is
applied at the left free end of each system. Several configurations of these two systems with
variations imposed on the length of certain members are employed in the validation (Table 1). The
hybrid results are compared to analytical solutions. In order to simulate in the analytical solution
the ensemble average behavior of the bending motion, a 4% variation is introduced in the length
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of the beam members [35]. The ensemble of systems incorporates all the effects of uncertainty
associated with the long members but it is defined for a specific frequency [16]. In the validation
presented in this paper it is preferred to introduce the uncertainty associated with the long
members (bending degrees of freedom) through an ensemble of systems rather than frequency
averaging in order to better demonstrate in the solution the highly resonant effects of the short
members (longitudinal degrees of freedom).
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hybrid joint

EFEA power
transfer coefficients
between long members
interconnected by short ones

EFEA

EFEA primary
variables at the joints
with short members

relationships between
FEA and EFEA primary
variables at the joints
between long and short
members

FEA analysis of short members
subjected to incoherent excitation
at the joints with long members

solution
for long
members

solution
for short
members

excitation applied
on long members

Fig. 1. Flow chart of the hybrid computational process.

Table 1

Properties of beams employed in the validation

Long beam

Young’s modulus of elasticity E ðN=m2Þ 19:5
 1010

Moment of inertia I ðm4Þ 9:365
 10�10

Mass density r ðkg=m3Þ 7,700

Damping factor Z 0.02

Cross-sectional area A ðm2Þ 1:935
 10�4

Cross-sectional dimensions width
 height (m) 0:0254
 0:00762
Length of beams (m) All beams in two-beam system 3

All beams in three-beam system 3

Three-beam system with altered length 6-3-3

Left beam-middle beam-right beam
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Fig. 2. Two-beam assembly utilized in the validation: (a) 30�; (b) 60�; (c) 90�:

Fig. 3. Three-beam assembly utilized in the validation.
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4.1. Two-beam system

Two beams connected at three different angles ð30�; 60�; 90�Þ are analyzed first. The analytical
solutions for the bending energy density associated with the long members and the longitudinal
energy density associated with the short members are presented in Figs. 4–6 for the configurations
with 30�; 60�; 90� angle, respectively, over an extended frequency range. The results allow to
determine the frequency regions where bending waves and longitudinal waves demonstrate
comparable energy density. The frequency regions of 625–675 Hz for the 30� configuration, 765–
855 Hz for the 60� configuration, and 800–880 Hz for the 903 configuration are identified as the
frequency ranges where a large amount of energy is associated with the longitudinal motion.
Thus, the three identified frequency regions are selected to perform validation analyses for the
hybrid FEA method since the longitudinal motion presents resonant behavior in the selected
frequency regions. In order to demonstrate the improvement achieved in the numerical solution
by the development of the hybrid formulation, the EFEA is utilized as a representative high-
frequency approach to model both the bending and the longitudinal behavior of the beams. The
EFEA results demonstrate the inherent deficiency of a high-frequency method (EFEA, SEA)
when simulating the behavior of a system in the mid-frequency range due to the inability to
capture the resonant behavior of the short members (longitudinal degrees of freedom). The hybrid
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Fig. 4. Analytical averaged bending and longitudinal energy density of two-beam system connected at 30�; 500–

800 Hz: ——, analy flexural—left long; - -, analy flexural—right long; � — �; analy longitudinal—left long; ....., analy

longitudinal—right long.
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solution constitutes an improvement and the results correlate well with the analytical solution for
both the bending and the longitudinal degrees of freedom.

The bending energy, the longitudinal energy, and the total energy of the system calculated by
the hybrid FEA, the EFEA, and analytically are presented in Figs. 7–9 for the three
configurations connected at 30�; 60�; and 90�; respectively. In the energy-based formulations
(SEA, EFEA), the primary variables of the energy (total energy stored in each group of similar
modes in the SEA, or the energy density associated with each type of wave in the EFEA) are
considered to be uncorrelated and the energy variables can be added in order to evaluate the total
amount of energy in the system [8,11,13]. The same principle, expressed as continuity of power
flow is also utilized for evaluating the power transfer coefficients at a joint between structural
members [17]. When computing the power transfer coefficients the power of the impinging wave is
considered to be equal to the summation of the power of all the transmitted and reflected waves
irrespectively of the wave type. Thus, in the systems analyzed in this paper the total energy of the
system is considered equal to the summation of the bending and the longitudinal energy in the
system. Since the same amount of input power is defined as excitation in all three solutions, as
expected, the results for the total energy in the system are the same for all three methods. The
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Fig. 5. Analytical averaged bending and longitudinal energy density of two-beam system connected at 60�; 700–

900 Hz: ——, analy flexural—left long; - -, analy flexural—right long; ; analy longitudinal—left long; ; analy
longitudinal—right long.
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differentiation in the results occurs in the predicted distribution of bending and longitudinal
energy in the members. The EFEA does not capture the resonant behavior of the longitudinal
degrees of freedom and it predicts that almost the entire amount of energy is stored in the bending
degrees of freedom. In addition, the EFEA predicts a very small amount of energy associated with
the longitudinal motion. The hybrid FEA captures correctly the highly resonant behavior of the
longitudinal degrees of freedom, and the results are identical with the analytical solution. In
particular, in the 903 configuration it can be observed from Fig. 9 that between 825 and 835 Hz the
longitudinal and the bending energies obtain approximately the same values. This event is
correctly predicted by the hybrid FEA and severely missed by the high-frequency EFEA solution.
In addition, it can also be observed from Figs. 7–9, that the percentage of energy converted to
longitudinal energy increases as the angle of connection between the two beams reaches 90�: This
is expected because at 90� more bending energy can be converted into longitudinal energy between
the two members [36].

The average energy density of a member is computed by dividing the total energy of the
member by its volume. The average energy density of a member is utilized as a measure for the
overall behavior at a particular frequency. Results for the bending and the longitudinal energy
density are presented in Figs. 10–12 for all three configurations. The good correlation between the
hybrid FEA and the analytical solution demonstrates that the hybrid FEA formulation captures
accurately the power transfer mechanism between long and short members, the resonant behavior
of the short members, and the coupling between EFEA and FEA solutions for the long and short
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Fig. 6. Analytical averaged bending and longitudinal energy density of two-beam system connected at 90�; 700–

1000 Hz: ——, analytical bending—left beam; - - - -, analytical bending—right beam; ; analytical longitudinal—left

beam; ; analytical longitudinal—right beam.
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members, respectively. Twenty finite elements are utilized in each FEA model for the longitudinal
degrees of freedom (short members) and six elements comprise each EFEA model of the bending
degrees of freedom (long members). The high-frequency EFEA analysis severely overpredicts the
bending energy and underpredicts the longitudinal energy of the system since it does not account
for the resonant behavior of the longitudinal degrees of freedom.

4.2. Three-beam system

A system of three beams connected at 90� angle is analyzed (Fig. 3). Excitation is applied at the
left end of the system. Analytical results for the bending energy density and the longitudinal
energy density are presented in Fig. 13 over an extended frequency range 550–1200 Hz in order to
identify a frequency range where the resonant effects of the longitudinal degrees of freedom are
prominent. The frequency range 770–850 Hz is selected for all analyses of the three-beam system
since resonant behavior is demonstrated in the longitudinal degrees of freedom. Results for the
bending energy, the longitudinal energy, and the total energy in the system are presented in Fig. 14
for all three methods. Since the same external input power is specified as excitation in all three
methods, as expected, all of them demonstrate the same amount of total energy at each frequency.
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Fig. 7. Analytical, hybrid, and EFEA results for bending, longitudinal, and total energy of the two-beam system

connected at 303; 625–675 Hz: ; analy—total; ; hybrid—total; ; EFEA—total; ——, analy—flexural; - -,

hybrid—flexural; �-�; EFEA—flexural; ; analy—longitudinal; ; hybrid—longitudinal; ; EFEA—longitudinal.
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The dissipated power is proportional to the total energy, therefore, the good agreement observed
in Fig. 14 for the total energy validates that dissipation is modelled properly in all three solutions.
The distribution of the energy between the bending and the longitudinal degrees of freedom
differentiates the hybrid FEA from the EFEA solution. Similar to the two-beam system, the
EFEA does not capture the longitudinal resonant behavior of the three-beam system. Thus, it
severely underpredicts the longitudinal energy and overpredicts the bending energy. The hybrid
FEA provides consistently good results compared to the analytical solution.

Due to the location of the excitation and the configuration of the system, the left beam
demonstrates the highest bending energy, and the middle beam demonstrates the highest
longitudinal energy. Results for the average bending energy density in the left beam and the
average longitudinal energy density in the middle beam are presented in Fig. 15. The agreement
between the hybrid and analytical solutions remains good. The EFEA underpredicts the resonant
behavior in the longitudinal direction and overpredicts the bending energy level.

The length of the left beam is extended from 3 to 6 m: This modification alters the boundary
conditions among the three members, and changes the power transfer coefficients among the long
members. Results for the total energy, the bending energy, and the longitudinal energy of the

ARTICLE IN PRESS

Fig. 8. Analytical, hybrid, and EFEA results for bending, longitudinal, and total energy of the two-beam system

connected at 60�; 765–855 Hz: ; analy—total; ; hybrid—total; ; EFEA—total; ——, analy—flexural; - -,

hybrid—flexural; �-�; EFEA—flexural; ; analy—longitudinal; ; hybrid—longitudinal; ; EFEA—longitudinal.
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system from the analytical, the hybrid FEA, and the EFEA solutions are presented in Fig. 16. As
expected, the energy levels are different than the previous three-beam system. The trends remain
the same with the hybrid FEA correlating well to the analytical solution and the EFEA missing
the longitudinal resonant effects. Results for the bending energy density in the left beam and the
longitudinal energy density in the middle beam are presented in Fig. 17. The hybrid formulation
correlates well to the analytical results since it accounts for the power transfer mechanism between
long members for the resonant and the energy dissipation effects of the short members. In
addition, the hybrid FEA accounts properly for power balance and power reinjection.

5. Conclusions

A basic hybrid FEA formulation for mid-frequency vibration analysis of beams connected at
arbitrary angles in a two-dimensional space is presented. Both bending and longitudinal waves
propagate in the system. In the mid-frequency range the bending behavior of the beams is
considered as incoherent and it is simulated by the EFEA and the longitudinal behavior is
considered as resonant and it is simulated by the FEA. Interface conditions between the primary
variables of the two formulations are derived at the joints and they constitute the hybrid joint
formulation. Power transfer coefficients for the EFEA method that include the resonant and
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Fig. 9. Analytical, hybrid, and EFEA results for bending, longitudinal, and total energy of the two-beam system

connected at 90�; 800–880 Hz: ——, analytical—total; - - -, hybrid—total; ; EFEA—total; ; analytical—

bending; ; hybrid—bending; ; EFEA—bending; ; analytical—longitudinal; ; hybrid—longitudinal;

; EFEA—longitudinal.
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Fig. 10. Analytical, hybrid, and EFEA results for energy density of the two-beam system connected at 30�; 625–

675 Hz; (a) bending; (b) longitudinal: ——, analy—left; - -, hybrid—left; �-�; EFEA—left; ; analy—right; ;
hybrid—right; ; EFEA—right.
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dissipative characteristics of the longitudinal vibration are derived from the hybrid joint
formulation. The external excitation is considered to be applied on the bending degrees of
freedom. The EFEA system of equations is solved first and the distribution of the bending energy
over all the beams is computed. The interface conditions between the EFEA and FEA primary
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Fig. 11. Analytical, hybrid, and EFEA results for energy density of the two-beam system connected at 60�; 765–

855 Hz; (a) bending; (b) longitudinal: ——, analy—left; - -, hybrid—left; �-�; EFEA—left; ; analy—right; ;
hybrid—right; ; EFEA—right.
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variables are employed for deriving the excitation imposed on the longitudinal FEA degrees of
freedom from the distribution of the bending energy. Several configurations of a two-beam and a
three-beam system are analyzed and results are compared between an analytical solution, the
hybrid FEA, and the high-frequency EFEA solution. The hybrid FEA method presents
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Fig. 12. Analytical, hybrid, and EFEA results for energy density of the two-beam system connected at 90�; 800–

880 Hz; (a) bending; (b) longitudinal: ——, analytical—left beam; - - -, hybrid—left beam; ; EFEA—left beam;

; analytical—right beam; ; hybrid—right beam; ; EFEA—right beam.
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Fig. 13. Analytical averaged bending and longitudinal energy density of three-beam system, 550–1200 Hz: ——,

analytical bending—left beam; - - -, analytical bending—middle beam; ; analytical bending—right beam; ;
analytical longitudinal—left beam; ; analytical longitudinal—middle beam; ; analytical longitudinal—right

beam.

Fig. 14. Analytical, hybrid, and EFEA results for bending, longitudinal, and total energy of the three-beam system,

770–850 Hz: ——, analytical—total; - - -, hybrid—total; ; EFEA—total; ; analytical—bending; ; hybrid—
bending; ; EFEA—bending; ; analytical—longitudinal; ; hybrid—longitudinal; ; EFEA—long-

itudinal.
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consistently good agreement with the analytical solution. The EFEA cannot predict accurately the
resonant behavior of the system since the resonant characteristics of the longitudinal degrees of
freedom are not included in the high-frequency EFEA solution.
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Appendix A. Analytical solution

The mid-frequency approach (hybrid FEA) presented in this paper is validated through
comparison with an analytical solution. The analytical solution for systems of beams connected at
an arbitrary angle is computed by a MATLAB code. First, the displacement solutions for the
bending and the longitudinal degrees of freedom are considered:

WLðxL; tÞ ¼ ðALe
�ikLxL þ BLe

�kLxL þ CLe
ikLxL þ DLe

kLxLÞeiot; ðA:1Þ

WSðxS; tÞ ¼ ðGSe
�ikSxS þ HSe

ikSxS Þeiot; ðA:2Þ
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Fig. 15. Analytical, hybrid, and EFEA results for bending, and longitudinal energy density of the three-beam system,

770–850 Hz: ——, analytical bending—left beam; - - - -, hybrid bending—left beam; ; EFEA bending—left beam;

; analytical longitudinal—middle beam; ; hybrid longitudinal—middle beam; ; EFEA longitudinal—

middle beam.
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where subscripts L and S are associated with the long (bending) and the short (longitudinal)
members, respectively, WLðxL; tÞ is the analytical transverse displacement solution of a long
member (function of xL and t), AL the amplitude of the right travelling farfield bending wave, BL

the amplitude of the right travelling nearfield bending wave, CL the amplitude of the left travelling
farfield bending wave, DL the amplitude of the left travelling nearfield bending wave, kL the
complex flexural wave number of the long member, o the radial frequency, WSðxS; tÞ the
analytical longitudinal displacement solution of a short member (function of xS and t), GS the
amplitude of the right travelling longitudinal wave, HS the amplitude of the left travelling
longitudinal wave, and kS the complex longitudinal wave number of the short member. A separate
reference system is utilized for each member. The origin is positioned at the left end of each
member. The power flow and energy density in the long and the short members are expressed in
terms of the corresponding analytical displacement solutions.

The power flow associated with the bending waves is evaluated from the shear force and the
bending moment. The power flow associated with the longitudinal waves is evaluated from the
axial force. The time averaged power associated with the long and short members is

/qLS ¼
1

2
ELILRe

@3WL

@x3
L

@WL

@t

� �n

�
@2WL

@x2
L

@2WL

@xL@t

� �n
( )

for a long member; ðA:3Þ

/qSS ¼
1

2
ESSSRe �

@WS

@xS

@WS

@t

� �n� �
for a short member: ðA:4Þ
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Fig. 16. Analytical, hybrid, and EFEA results for bending, longitudinal, and total energy of the three-beam system with

altered length, 770–850 Hz: ——, analytical—total; - - -, hybrid—total; ; EFEA—total; ; analytical—bending;

; hybrid—bending; ; EFEA—bending; ; analytical—longitudinal; ; hybrid—longitudinal; ;
EFEA—longitudinal.
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The total bending energy density in a beam is computed as the sum of the potential energy
density VL and the kinetic energy density TL of the bending waves. The total energy density in a
longitudinally vibrating short member is computed as the sum of its potential energy density VS

and kinetic energy density TS of the longitudinal waves. The time-averaged total energy density
solutions for the long and the short members are

/eLS ¼
1

4

ELIL

SL

@2WL

@x2
L

@2WL

@x2
L

� �n
( )

þ
1

4
rL

@WL

@t

@WL

@t

� �n� �
for a long member; ðA:5Þ
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1

4
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@WS

@xS

@WS

@xS

� �n� �
þ

1

4
rS

@WS

@t

@WS

@t

� �n� �
for a short member: ðA:6Þ

Substitution of the displacement solutions (Eqs. (A.1) and (A.2) into Eqs. (A.5) and (A.6) allows
to express the time-averaged energy density as

/eLS ¼
1

4

ELIL

SL

jk2
Lj

2 
 ð�ALe
�ikLxL þ BLe

�kLxL � CLe
ikLxL þ DLe

kLxLÞ


 ð�ALe
�ikLxL þ BLe

�kLxL � CLe
ikLxL þ DLe

kLxLÞn þ 1
4
rLo

2


 ðALe
�ikLxL þ BLe

�kLxL þ CLe
ikLxL þ DLe

kLxLÞ


 ðALe
�ikLxL þ BLe

�kLxL þ CLe
ikLxL þ DLe

kLxLÞn ðA:7Þ
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Fig. 17. Analytical, hybrid, and EFEA results for bending, and longitudinal energy density of the three-beam system

with altered length, 770–850 Hz: ——, analytical bending—left beam; - - - -, hybrid bending—left beam; ; EFEA

bending—left beam; ; analytical longitudinal—middle beam; ; hybrid longitudinal—middle beam; ;
EFEA longitudinal—middle beam.
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/eSS ¼ 1
4

ESjkS j2 
 ðGSe
�ikSxS � HSe

ikSxS Þ 
 ðGSe
�ikSxS � HSe

ikSxS Þn

þ 1
4
rSo

2 
 ðGSe
�ikSxS þ HSe

ikSxS ÞðGSe
�ikSxS þ HSe

ikSxS Þn: ðA:8Þ

Finally, the energy density /eLS and /eSS are spaced-averaged over one wavelength to obtain
the analytical expressions for the time- and space-averaged energy density /eLS and /eSS in the
long and the short members, respectively. In all of the analytical solutions the ensemble average
response of the system is computed. The ensemble average behavior of the long members is
introduced in the analytical solution through a 4% variation assigned to the length of the beams.
This is a representative value that has been utilized in the literature for introducing the ensemble
average behavior in analytical solutions [35], and has also been utilized for the validation of
previous hybrid FEA development [27–29].
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